Journal Publications
2022
- Chow, A.D., Stansby, P.K., Rogers, B.D., Lind, S.J., Fang, Q., 2022, Focused wave interaction with a partially-immersed rectangular box using 2-D incompressible SPH on a GPU comparing with experiment and linear theory, European Journal of Mechanics, B/Fluids, 2022, 95, 252–275, doi:10.1016/j.euromechflu.2022.05.007
- Majtan, E., Cunningham, L.S., Rogers, B.D., 2022, Experimental and Numerical Investigation of Floating Large Woody Debris Impact on a Masonry Arch Bridge, Journal of Marine Science and Engineering, 2022, 10(7), 911, doi:10.3390/jmse10070911
- Rastelli, P., Vacondio, R., Marongiu, J.C., Fourtakas, G., Rogers, B.D., 2022, Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions, Computer Methods in Applied Mechanics and Engineering, 2022, 393, 114716, doi:10.1016/j.cma.2022.114716
- O'Connor, J., Domínguez, J.M., Rogers, B.D., Lind, S.J., Stansby, P.K., 2022, Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs, Computer Physics Communications, 273 (108263), doi: 10.1016/j.cpc.2021.108263
- Bower, R., Rogers, B.D., Schaller, M., 2022, Massively Parallel Particle Hydrodynamics at Exascale, Computing in Science and Engineering, 2022, 24(1), 14–25, doi:10.1109/MCSE.2021.3134604
- Khayyer, A., Rogers, B.D., Zhang, A.-M., 2022, Preface: Special Issue on Advances and Applications of SPH in Ocean Engineering, Applied Ocean Research, 2022, 118, 103028, doi:10.1016/j.apor.2021.103028
2021
- Majtan, E., Cunningham, L.S., Rogers, B.D., 2021, Flood-induced hydrodynamic and debris impact forces on single-span masonry arch bridge, Journal of Hydraulic Engineering, 147(11), doi: 10.1061/(ASCE)HY.1943-7900.0001932
- Feng, R., Fourtakas, G., Rogers, B.D., Lombardi, D., 2021, Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics, Computers and Geotechnics, 138, 104356, doi: 10.1016/j.compgeo.2021.104356
- King, J.R.C., Lind, S.J., 2021, High Weissenberg number simulations with incompressible Smoothed Particle Hydrodynamics and the log-conformation formulation, Journal of Non-Newtonian Fluid Mechanics, 293,104556, https://dx.doi.org/10.1016/j.jnnfm.2021.104556
- Bartke, G., Fourtakas, G., Canelas, R.B., Rogers, B.D., Huhn, K., 2021, Simulation of flow past a sphere on a rough bed using smoothed particle hydrodynamics (SPH), Computational Particle Mechanics, doi: 10.1007/s40571-021-00417-x
- Fourtakas, G., Rogers, B.D., Nasar, A.M.A., 2021, Towards pseudo-spectral incompressible smoothed particle hydrodynamics (ISPH), Computer Physics Communications, 266, 108028, doi: 10.1016/j.cpc.2021.108028
- O'Connor, J., Rogers, B.D., 2021, A fluid-structure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU, Journal of Fluids and Structures, 104, doi: 10.1016/j.jfluidstructs.2021.103312
- Domínguez, J.M., Fourtakas, G., Altomare, C., Canelas, R.B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A.J.C., Rogers, B.D., Stansby, P.K., Gómez-Gesteira, M., 2021, DualSPHysics: from fluid dynamics to multiphysics problems, Computational Particle Mechanics, doi: 10.1007/s40571-021-00404-2
- English, A., Domínguez, J.M., Vacondio, R., Crespo, A.J.C., Stansby, P.K., Lind, S.J., Chiapponi, L., Gómez-Gesteira, M., 2021, Modified dynamic boundary conditions (mDBC) for general-purpose smoothed particle hydrodynamics (SPH): application to tank sloshing, dam break and fish pass problems, Computational Particle Mechanics, doi: 10.1007/s40571-021-00403-3
- Pringgana, G., Cunningham, L.S., Rogers, B.D. 2021. Influence of Orientation and Arrangement of Structures on Tsunami Impact Forces: Numerical Investigation with Smoothed Particle Hydrodynamics. J. Waterway, Port, Coastal, Ocean Engineering, 147(3), doi:10.1061/(ASCE)WW.1943-5460.0000629
- Nasar, A.M.A., Fourtakas, G., Lind, S.J., Rogers, B.D., Stansby, P.K., King, J.R.C., 2021, High-order velocity and pressure wall boundary conditions in Eulerian incompressible SPH, Journal of Computational Physics, 434, 109793, doi: 10.1016/j.jcp.2020.109793
2020
- King, J.R.C., Lind, S.J., Nasar, A.M.A., 2020, High order difference schemes using the local anisotropic basis function method, Journal of Computational Physics, Vol.415, p.109549, https://dx.doi.org/10.1016/j.jcp.2020.109549
- Vacondio, R., Altomare, C., De Leffe, M., Hu, X.-Y., Le Touzé, D., Lind, S.J., Marongiu, J.-C., Marrone, S., Rogers, B.D., Souto-Iglesias, A., 2020, Grand challenges for Smoothed Particle Hydrodynamics numerical schemes, Computational Particle Mechanics, doi: 10.1007/s40571-020-00354-1
- Xenakis, A.M., Lind, S.J., Stansby, P.K., Rogers, B.D., 2020, An incompressible smoothed particle hydrodynamics scheme for Newtonian/non-Newtonian multiphase flows including semi-analytical solutions for two-phase inelastic Poiseuille flows, International Journal for Numerical Methods in Fluids, 92(7), 703-726, doi: 10.1002/fld.4802
- Reece, G., Rogers, B.D., Lind, S.J., Fourtakas, G., 2020, New instability and mixing simulations using SPH and a novel mixing measure, Journal of Hydrodynamics, 32, 684–698, doi: 10.1007/s42241-020-0045-x
- Owen, B., Nasar, A.M.A., Harwood, A.R.G., Hewitt, S., Bojdo, N., Keavney, B., Rogers, B.D., Revell, A., 2020, Vector-based discrete element method for solid elastic materials, Computer Physics Communications, 254, 107353, doi: 10.1016/j.cpc.2020.107353
- Lind, S.J., Rogers, B.D., Stansby, P.K., 2020, Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476 (2241), doi: 10.1098/rspa.2019.0801
2019
- Baines, A., Watson, P., Cunningham, L.S., Rogers, B.D., Murphy, J., Lizondo, S., 2019, Modelling shore-side pressure distributions from violent wave breaking at a seawall, Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 172(3), 118-123, doi: 10.1680/jencm.19.00007
- Fourtakas, G., Domínguez J.M., Vacondio, R., Rogers B.D., 2019, Local uniform stencil (LUST) boundary condition for arbitrary 3-D boundaries in parallel smoothed particle hydrodynamics (SPH) models, Computers and Fluids, 190, 346-361, doi: 10.1016/j.compfluid.2019.06.009
- Nasar, A.M.A., Rogers, B.D., Revell, A.R., Stansby, P.K., 2019, Flexible slender body fluid interaction: Vector-based discrete element method with Eulerian smoothed particle hydrodynamics, Computers and Fluids, 179, 563-578, doi: 10.1016/j.compfluid.2018.11.024
- Chow, A.D., Rogers, B.D., Lind, S.J., Stansby, P.K., 2019, Numerical wave basin using incompressible smoothed particle hydrodynamics (ISPH) on a single GPU with vertical cylinder test cases, Computers and Fluids, 179, 543-562, doi: 10.1016/j.compfluid.2018.11.022
- Nasar, A.M.A., Rogers, B.D., Revell, A.R., Stansby, P.K., Lind, S.J., 2019, Eulerian weakly compressible smoothed particle hydrodynamics (SPH) with the immersed boundary method for thin slender bodies, Journal of Fluids and Structures, 84, 263-282, doi: 10.1016/j.jfluidstructs.2018.11.005
2018
- Guo, X., Rogers, B.D., Lind, S.J., Stansby, P.K., 2018, New massively parallel scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for highly nonlinear and distorted flow, Computer Physics Communications, 233, 16-28, doi: 10.1016/j.cpc.2018.06.006
- Zubeldia, E.H., Fourtakas, G., Rogers, B.D., Farias, M.M., 2018, Multi-phase SPH model for simulation of erosion and scouring by means of the Shields and Drucker–Prager criteria, Advances in Water Resources, 117, 98-114, doi: 10.1016/j.advwatres.2018.04.011
- Chow, A.D., Rogers, B.D., Stansby, P.K., Lind, S.J., 2018, Incompressible SPH (ISPH) with fast Poisson solver on a GPU, Computer Physics Communications, 26, 81-103, doi: 10.1016/j.cpc.2018.01.005.
- Fourtakas, G., Stansby, P.K., Rogers B.D., Lind, S.J., 2018, An Eulerian–Lagrangian incompressible SPH formulation (ELI-SPH) connected with a sharp interface, Computer Methods in Applied Mechanics and Engineering, 329, 532-552, doi: 10.1016/j.cma.2017.09.029.
- Fourtakas, G., Stansby, P.K., Rogers B.D., Lind, S.J., Yan, S., Ma, Q.W., 2018, On the coupling of incompressible SPH with a finite element potential flow solver for nonlinear free-surface flows, International Journal of Offshore and Polar Engineering, 28(3), 248-254, doi: 10.17736/ijope.2018.ak28.
2017
- Ferrand, M., Joly, A., Kassiotis, C., Violeau, V., Leroy, A., Morel, F.-X., Rogers, B.D., 2017, Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D, Computer Physics Communications, 210, 29-44, doi: 10.1016/j.cpc.2016.09.009.
- Alshaer, A.W., Rogers, B.D., Li, L., 2017, Smoothed Particle Hydrodynamics (SPH) modelling of transient heat transfer in pulsed laser ablation of Al and associated free-surface problems, Computational Materials Science, 127, 161-179, doi: 10.1016/j.commatsci.2016.09.004.
- Mokos, A., Rogers, B.D., Stansby, P.K. 2016. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles. Journal of Hydraulic Research, 55 (2), 143-162. doi.org/10.1080/00221686.2016.1212944.
- Xenakis, A.M., Lind, S.J., Stansby, P.K., Rogers, B.D. 2017, Landslides and tsunamis predicted by incompressible smoothed particle hydrodynamics (SPH) with application to the 1958 Lituya Bay event and idealized experiment, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473 (2199), 20160674, doi:10.1098/rspa.2016.0674.
2016
- Fourtakas G., Rogers B.D. 2016. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a graphics processing unit (GPU). Advances in Water Resources, 92: 186-99. doi:10.1016/j.advwatres.2016.04.009.
- Vacondio R., Rogers B.D, Stansby P.K., Mignosa P. 2016. Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Computer Methods in Applied Mechanics and Engineering, 300: 442-460. April. doi: 10.1016/j.cma.2015.11.021.
- Heller, V., Bruggemann, M., Spinneken, J., Rogers, B.D. 2016. Composite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coastal Engineering, 109: 20–41. doi:10.1016/j.coastaleng.2015.12.004.
- Pringgana, G., Cunningham, L.S., Rogers, B.D. 2016. Modelling of tsunami-induced bore and structure interaction. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 169(3): 109-125. doi:10.1680/jencm.15.00020.
- Violeau, D., Rogers, B.D. Smoothed particle hydrodynamics (SPH) for free-surface flows: Past, present and future, Journal of Hydraulic Research, 54 (1), 1-26, doi: 10.1080/00221686.2015.1119209
- Lind, S., Stansby, P.K., Rogers, B. D. 2016. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH), Journal of Computational Physics, 309: 129-147 . doi: 10.1016/j.jcp.2015.12.005.
- Lind, S., Stansby, P.K., Rogers, B. D. 2016. Fixed and moored bodies in steep and breaking waves using SPH with the Froude Krylov approximation. Journal of Ocean Engineering and Marine Energy. 2 (3), 331-354, DOI: 10.1007/s40722-016-0056-4.
- Lind, S., Stansby, P.K. 2016. High-Order Eulerian Incompressible Smoothed Particle Hydrodynamics with Transition to Lagrangian Free-Surface Motion. Journal of Computational Physics, 326. DOI: 10.1016/j.jcp.2016.08.047.
2015
- Mokos A, Rogers B.D., Stansby P.K., Domínguez J.M. 2015. Multi-phase SPH modelling of violent hydrodynamics on GPUs. Computer Physics Communications, 196: 304-316. doi: 10.1016/j.cpc.2015.06.020.
- Fourtakas, G., Vacondio R., Rogers, B.D. 2015. On the approximate zeroth and first-order consistency in the presence of 2-D irregular boundaries in SPH obtained by the virtual boundary particle methods. International Journal for Numerical Methods in Fluids, 78: 475-501. doi: 10.1002/fld.4026.
- Longshaw, S.M., Rogers, B.D. 2015. Automotive Fuel Cell Sloshing Under Temporally and Spatially Varying High Acceleration Using GPU Based Smoothed Particle Hydrodynamics (SPH). Advances in Engineering Software, 83: 31–44. doi:10.1016/j.advengsoft.2015.01.008.
- Crespo AJC, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O. 2015. DualSPHysics: open-source parallel CFD solver on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187: 204-216. doi: 10.1016/j.cpc.2014.10.004.
- Mayrhofer, A., Laurence, D.,Rogers, B.D., Violeau, D. DNS and LES of 3-D wall-bounded turbulence using Smoothed Particle Hydrodynamics, Computers and Fluids, 115, 86-97, doi: 10.1016/j.compfluid.2015.03.029.
- Xenakis, A.M., Lind, S.J., Stansby, P.K., Rogers, B.D., An incompressible SPH scheme with improved pressure predictions for free-surface generalised Newtonian flows, Journal of Non-Newtonian Fluid Mechanics, 218, 1-15, doi: 10.1016/j.jnnfm.2015.01.006.
- Lind, S.J., Stansby, P.K., Rogers, B.D., Lloyd, P.M., Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics, Applied Ocean Research, 49, 57-71, doi: 10.1016/j.apor.2014.11.001.
- Mayrhofer A., Ferrand M., Kassiotis C., Violeau D., Morel F. 2015, Unified semi-analytical wall boundary conditions in SPH: analytical extension to 3-D, Numerical Algorithms, 68, 15–34, doi: 10.1007/s11075-014-9835-y.
2014
- Cunningham, L.S., Rogers, B.D., Pringgana G. 2014. Tsunami wave and structure interaction: An investigation with smoothed-particle hydrodynamics. Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 167(3): 106-116. doi:10.1680/eacm.13.00028 (winner of the 2014 EACM Best Paper Award).
- Altomare C., Crespo A.J.C., Rogers, B.D., Domínguez J.M., Gironella, X., Gómez-Gesteira, M. 2014. Numerical modelling of armour block sea breakwater with Smoothed Particle Hydrodynamics. Computers and Structures, 130: 34-45. doi:10.1016/j.compstruc.2013.10.011.
2013
- Fourtakas, G., Rogers, B.D., Laurence, D.R.P. 2013. Modelling Sediment resuspension in Industrial tanks using SPH. La Houille Blanche, 2: 39-45. doi:10.1051/lhb/2013014.
- Domínguez, J.M., Crespo, A.J.C., Valdez-Balderas, D., Rogers, B.D. and Gómez-Gesteira M. 2013. New multi-GPU implementation for Smoothed Particle Hydrodynamics on heterogeneous clusters. Computer Physics Communications, 184: 1848-1860. doi:10.1016/j.cpc.2013.03.008.
- Valdez-Balderas D., Domínguez, J.M., Rogers, B.D., Crespo, A.J.C. 2013. Towards accelerating smoothed particle hydrodynamics simulations for free-surface flows on multi-GPU clusters. Journal of Parallel and Distributed Computing, 73(11): 1483-1493. doi:10.1016/j.jpdc.2012.07.010.
- Skillen, A., Lind, S.J., Stansby, P.K., Rogers ,B.D. 2013. Incompressible Smoothed Particle Hydrodynamics (SPH) with reduced temporal noise and generalised Fickian smoothing applied to body-water slam and efficient wave-body interaction. Computer Methods in Applied Mechanics and Engineering, 265: 163-173. doi:10.1016/j.cma.2013.05.017.
- Omidvar, P., Stansby, P.K., Rogers, B.D. 2013. SPH for 3D floating bodies using variable mass particle distribution. International Journal for Numerical Methods in Fluids, 72(4): 427-452. doi:10.1002/fld.3749.
- Mayrhofer, A., Rogers, B.D., Violeau, D., Ferrand, M. 2013, Investigation of wall bounded flows using SPH and the unified semi-analytical wall boundary conditions, Computer Physics Communications, 184 (11), 2515-2527, doi: 10.1016/j.cpc.2013.07.004.
- Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P. 2013, Shallow water SPH for flooding with dynamic particle coalescing and splitting, Advances in Water Resources, 58, 10-23, doi: 10.1016/j.advwatres.2013.04.007.
- Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P., Feldman, J. 2013, Variable resolution for SPH: A dynamic particle coalescing and splitting scheme, Computer Methods in Applied Mechanics and Engineering, 256, 132-148, doi: 10.1016/j.cma.2012.12.014.
- Ferrand, M., Laurence, D.R., Rogers, B.D., Violeau, D., Kassiotis, C. 2013, Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method, International Journal for Numerical Methods in Fluids, 71 (4), 446-472, doi: 10.1002/fld.3666.
- Muhammad, N., Rogers, B.D., Li, L. 2013, Understanding the behaviour of pulsed laser dry and wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH) modelling, Journal of Physics D: Applied Physics, 46 (9), 095101, doi: 10.1088/0022-3727/46/9/095101.
- Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P. 2013, A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling, International Journal for Numerical Methods in Fluids, doi: 10.1002/fld.3687.
2012
- Gómez-Gesteira, M, Crespo, A.J.C., Rogers, B.D., Dalrymple, R.A., Domínguez J.M., Barreiro, A. 2012. SPHysics - development of a free-surface fluid solver- Part 2: Efficiency and test cases. Computers & Geosciences, 48:300-307. doi:10.1016/j.cageo.2012.02.028.
- Gómez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R.A., Narayanaswamy, M., Domínguez, J.M. 2012. SPHysics - development of a free-surface fluid solver- Part 1: Theory and Formulations. Computers & Geosciences, 48: 289-299. doi:10.1016/j.cageo.2012.02.029.
- Omidvar, P., Stansby, P.K., Rogers, B.D. 2012. Wave body interaction in 2D using Smoothed Particle Hydrodynamics (SPH) with variable particle mass. International Journal for Numerical Methods in Fluids, 68(6): 686-705. doi:10.1002/fld.2528.
- Shahriari, S., Kadem, L., Rogers, B.D., Hassan, I. 2012, Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity, International Journal for Numerical Methods in Biomedical Engineering, 28 (11), 1121-1143, doi: 10.1002/cnm.2482.
- Lind, S.J., Xu, R., Stansby, P.K., Rogers, B.D., 2012, Incompressible smoothed particle hydrodynamics for free-surface flows: A generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves, Journal of Computational Physics, 231 (4), 1499-1523, doi: 10.1016/j.jcp.2011.10.027.
- Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P. 2012, Accurate particle splitting for smoothed particle hydrodynamics in shallow water with shock capturing, International Journal for Numerical Methods in Fluids, 69 (8), 1377-1410, doi: 10.1002/fld.2646.
- Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P. 2012, SPH Modeling of Shallow Flow with Open Boundaries for Practical Flood Simulation, Journal of Hydraulic Engineering, 138 (6), 530-541, 69 (1), 226-253, doi: 10.1061/(ASCE)HY.1943-7900.0000543.
- Vacondio, R., Rogers, B.D., Stansby, P.K., Mignosa, P. 2012, Smoothed Particle Hydrodynamics: Approximate zero-consistent 2-D boundary conditions and still shallow-water tests, International Journal for Numerical Methods in Fluids, 69 (1), 226-253, doi: 10.1002/fld.2559.
2011
- Crespo, A.J.C., Dominguez, J.M., Barreiro, A., Gómez-Gesteira, M., Rogers, B.D. 2011. GPUs, a new tool of acceleration in CFD: Efficiency and reliability on Smoothed Particle Hydrodynamics methods. PLoS ONE, 6(6), e20685. doi:10.1371/journal.pone.0020685.
- Vacondio, R., Rogers, B.D., Stansby, P.K. 2011. Smoothed Particle Hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow water tests. International Journal for Numerical Methods in Fluids, 69(1): 226-253. doi:10.1002/fld.2559.
2010
- Gómez-Gesteira, M., Rogers, B.D., Dalrymple, R.A., Crespo, A.J.C. 2010. State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, 48: 6-27. doi:10.1080/00221686.2010.9641242.
- Rogers, B.D., Dalrymple, R.A., Stansby, P.K. 2010. Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 48: 135-141, doi:10.1080/00221686.2010.9641254.
2009
- Xu, R., Stansby, P.K., Laurence, D. (2008). Accuracy and stability in projection based method incompressible SPH (ISPH) and a new approach. Journal of Computational Physics, 228, 6703-6725. DOI: 10.1016/j.jcp.2009.05.032.
2008
- Lee, E. S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., & Stansby, P. (2008). Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. Journal of Computational Physics, 227(18), 8417-8436. DOI: 10.1016/j.jcp.2008.06.005.
2006
- Dalrymple, R.A., Rogers, B.D. 2006. Numerical Modeling of Water Waves with the SPH Method. Coastal Engineering, 53(2-3): 141-147, doi:10.1016/j.coastaleng.2005.10.004.